zhenbo

ISSN 0253-3782 CN 11-2021/P

利用双差层析成像方法反演青藏高原东南缘地壳速度结构

刘伟 吴庆举 张风雪

引用本文: 刘伟, 吴庆举, 张风雪. 2019. 利用双差层析成像方法反演青藏高原东南缘地壳速度结构. 地震学报, 41(2): 155-168. doi: 10.11939/jass.20180083 shu
Citation:  Liu Wei, Wu Qingju, Zhang Fengxue. 2019. Crustal structure of southeastern Tibetan Plateau inferred from double-difference tomography. Acta Seismologica Sinica41(2): 155-168. doi: 10.11939/jass.20180083 shu

利用双差层析成像方法反演青藏高原东南缘地壳速度结构

    通讯作者: 吴庆举, wuqj@cea-igp.ac.cn
摘要: 本文利用云南及周边区域地震台网2010—2016年记录到的近震资料,采用双差层析成像方法进行地震重定位并获得了青藏高原东南缘的三维地壳速度结构。结果显示:重定位后的震源位置精度得到明显提高,震源主要分布于20 km深度以上的中上地壳;地震分布与速度结构存在一定的相关性,大多数地震发生在中上地壳的低速异常区内以及高、低速异常区域之间;研究区上地壳速度结构存在明显的横向不均匀性,其速度异常与地表地形及地质特征密切相关;中下地壳分布着两条主要的低速带,一条沿着安宁河断裂、小江断裂分布在川滇菱形地块的东侧;另一条主要分布在川西北次级地块内,并穿过丽江断裂向南延伸,推测这两条低速带可能是青藏高原中下地壳物质向南逃逸的两条通道。

English

    1. 胡家富,苏有锦,朱雄关,陈赟. 2003. 云南的地壳S波速度与泊松比结构及其意义[J]. 中国科学:D辑,33(8):714–722.

    2. Hu J F,Su Y J,Zhu X G,Chen Y. 2005. S-wave velocity and Poisson’s ratio structure of crust in Yunnan and its implication[J]. Science in China:Series D,48(2):210–218. doi: 10.1360/03yd0062

    3. 黄金莉,赵大鹏,郑斯华. 2001. 川滇活动构造区地震层析成像[J]. 地球物理学报,44(增刊1):127–135.

    4. Huang J L,Zhao D P,Zheng S H. 2001. Seismic tomography of the Sichuan-Yunnan active tectonic region[J]. Chinese Journal of Geophysics,44(S1):127–135 (in Chinese).

    5. 李永华,吴庆举,田小波,张瑞青,潘佳铁,曾融生. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构[J]. 地球物理学报,52(1):67–80.

    6. Li Y H,Wu Q J,Tian X B,Zhang R Q,Pan J T,Zeng R S. 2009. Crustal structure in the Yunnan region determined by modeling receiver functions[J]. Chinese Journal of Geophysics,52(1):67–80 (in Chinese).

    7. 李永华,徐小明,张恩会,高家乙. 2014. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质,36(4):1204–1216. doi: 10.3969/j.issn.0253-4967.2014.04.021

    8. Li Y H,Xu X M,Zhang E H,Gao J Y. 2014. Three-dimensional crust structure beneath SE Tibetan Plateau and its seismotectonic implications for the Ludian and Jinggu earthquakes[J]. Seismology and Geology,36(4):1204–1216 (in Chinese).

    9. 潘佳铁,李永华,吴庆举,丁志峰. 2015. 青藏高原东南部地区瑞雷波相速度层析成像[J]. 地球物理学报,58(11):3993–4006.

    10. Pan J T,Li Y H,Wu Q J,Ding Z F. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,58(11):3993–4006 (in Chinese). doi: 10.6038/cjg20151109

    11. 齐诚,赵大鹏,陈颙,陈棋福,王宝善. 2006. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报,49(3):805–815. doi: 10.3321/j.issn:0001-5733.2006.03.024

    12. Qi C,Zhao D P,Chen Y,Chen Q F,Wang B S. 2006. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region[J]. Chinese Journal of Geophysics,49(3):805–815 (in Chinese).

    13. 钱晓东,秦嘉政,刘丽芳. 2011. 云南地区现代构造应力场研究[J]. 地震地质,33(1):91–106. doi: 10.3969/j.issn.0253-4967.2011.01.009

    14. Qian X D,Qin J Z,Liu L F. 2011. Study on recent tectonic stress field in Yunnan region[J]. Seismology and Geology,33(1):91–106 (in Chinese).

    15. 王椿镛,Mooney W D,王溪莉,吴建平,楼海,王飞. 2002. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报,24(1):1–16. doi: 10.3321/j.issn:0253-3782.2002.01.001

    16. Wang C Y,Mooney W D,Wang X L,Wu J P,Lou H,Wang F. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region,China[J]. Acta Seismologica Sinica,24(1):1–16 (in Chinese).

    17. 王长在,吴建平,房立华,王未来. 2013. 玉树地震震源区速度结构与余震分布的关系[J]. 地球物理学报,56(12):4072–4083. doi: 10.6038/cjg20131212.

    18. Wang C Z,Wu J P,Fang L H,Wang W L. 2013. The relationship between wave velocity structure around Yushu earthquake source region and the distribution of aftershocks[J]. Chinese Journal of Geophysics,56(12):4072–4083 (in Chinese). doi: 10.6038/cjg20131212

    19. 王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学:地球科学,44(11):2440–2450.

    20. Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532–2542. doi: 10.1007/s11430-014-4908-2

    21. 王琼,高原,石玉涛. 2015. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究[J]. 地球物理学报,58(11):4068–4078.

    22. Wang Q,Gao Y,Shi Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics,58(11):4068–4078 (in Chinese). doi: 10.6038/cjg20151115

    23. 王小娜,于湘伟,章文波. 2015. 芦山震区地壳三维P波速度精细结构及地震重定位研究[J]. 地球物理学报,58(4):1179–1193. doi: 10.6038/cjg20150408.

    24. Wang X N,Yu X W,Zhang W B. 2015. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan source area[J]. Chinese Journal of Geophysics,58(4):1179–1193 (in Chinese). doi: 10.6038/cjg20150408

    25. 韦伟,孙若昧,石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨[J]. 中国科学:地球科学,40(7):831–839.

    26. Wei W,Sun R M,Shi Y L. 2010. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China Earth Sciences,53(9):1252–1259. doi: 10.1007/s11430-010-4037-5

    27. 吴建平,明跃红,王椿镛. 2001. 云南数字地震台站下方的S波速度结构研究[J]. 地球物理学报,44(2):228–237. doi: 10.3321/j.issn:0001-5733.2001.02.010

    28. Wu J P,Ming Y P,Wang C Y. 2001. The S wave velocity structure beneath digital seismic stations of Yunnan Province inferred from teleseismic receiver function modeling[J]. Chinese Journal of Geophysics,44(2):228–237 (in Chinese).

    29. 吴建平,杨婷,王未来,明跃红,张天中. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报,56(7):2257–2267.

    30. Wu J P,Yang T,Wang W L,Ming Y H,Zhang T Z. 2013. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics,56(7):2257–2267 (in Chinese). doi: 10.6038/cjg20130713

    31. 肖卓,高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报,60(6):2213–2225. doi: 10.6038/cjg20170615.

    32. Xiao Z,Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan Plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,60(6):2213–2225 (in Chinese). doi: 10.6038/cjg20170615

    33. 熊绍柏,郑晔,尹周勋,曾晓献,全幼黎,孙克忠. 1993. 丽江—攀枝花—者海地带二维地壳结构及其构造意义[J]. 地球物理学报,36(4):434–444. doi: 10.3321/j.issn:0001-5733.1993.04.004

    34. Xiong S B,Zheng Y,Yin Z X,Zeng X X,Quan Y L,Sun K Z. 1993. The 2-D structure and it’s implications of the crust in the Lijiang-Panzhihua-Zhehai region[J]. Chinese Journal of Geophysics,36(4):434–444 (in Chinese).

    35. 徐涛,张忠杰,刘宝峰,陈赟,张明辉,田小波,徐义刚,滕吉文. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹:来自丽江—清镇宽角地震资料的约束[J]. 中国科学:地球科学,45(5):561–576.

    36. Xu T,Zhang Z J,Liu B F,Chen Y,Zhang M H,Tian X B,Xu Y G,Teng J W. 2015. Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity[J]. Science China Earth Sciences,58(7):1133–1147. doi: 10.1007/s11430-015-5094-6

    37. 徐义刚,钟孙霖. 2001. 峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J]. 地球化学,30(1):1–9. doi: 10.3321/j.issn:0379-1726.2001.01.002

    38. Xu Y G,Zhong S L. 2001. The Emeishan large igneous province:Evidence for mantle plume activity and melting conditions[J]. Geochimica,30(1):1–9 (in Chinese).

    39. 张培震. 2008. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J]. 中国科学:D辑,38(9):1041–1056.

    40. Zhang P Z. 2008. The present day tectonic deformation,strain partitioning and deep dynamic process of the western Sichuan region along eastern margin of Qinghai-Tibet Plateau[J]. Science in China:Series D,38(9):1041–1056 (in Chinese).

    41. 张招崇,Mahoney J J,王福生,赵莉,艾羽,杨铁铮. 2006. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J]. 岩石学报,22(6):1538–1552. doi: 10.3321/j.issn:1000-0569.2006.06.012

    42. Zhang Z C,Mahoney J J,Wang F S,Zhao L,Ai Y,Yang T Z. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province,China:Evidence for a plume-head origin[J]. Acta Petrologica Sinica,22(6):1538–1552 (in Chinese).

    43. 郑晨,丁志峰,宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报,59(9):3223–3236. doi: 10.6038/cjg20160908.

    44. Zheng C,Ding Z F,Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,59(9):3223–3236 (in Chinese). doi: 10.6038/cjg20160908

    45. 郑定昌,盖增喜,杨润海,闵照旭,唐有彩,姜明明,庞卫东. 2014. 云南地区背景噪声层析成像[J]. 地震学报,36(4):602–614. doi: 10.3969/j.issn.0253-3782.2014.04.007

    46. Zheng D C,Ge Z X,Yang R H,Min Z X,Tang Y C,Jiang M M,Pang W D. 2014. Broadband ambient noise tomography in Yunnan Province[J]. Acta Seismologica Sinica,36(4):602–614 (in Chinese). doi: 10.3969/j.issn.0253-3782.2014.04.007

    47. 周龙泉,刘杰,苏有锦,马宏生,周俊杰. 2009. 利用S波高频衰减参数对云南地区地壳Q值成像[J]. 地球物理学报,52(6):1500–1507. doi: 10.3969/j.issn.0001-5733.2009.06.011

    48. Zhou L Q,Liu J,Su Y J,Ma H S,Zhou J J. 2009. Tomography for Q of Yunnan region from high-frequency attenuation of S wave[J]. Chinese Journal of Geophysics,52(6):1500–1507 (in Chinese).

    49. Avouac J P,Tapponnier P. 1993. Kinematic model of active deformation in central Asia[J]. Geophys Res Lett,20(10):895–898. doi: 10.1029/93GL00128

    50. Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830

    51. Bao X W,Sun X X,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Li H,Yu D Y,Huang Z C,Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth Planet Sci Lett,415:16–24. doi: 10.1016/j.jpgl.2015.01.020

    52. Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

    53. Eberhart-Phillips D. 1986. Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times[J]. Bull Seismol Soc Am,76(4):1025–1052.

    54. He B,Xu Y G,Chung S L,Xiao L,Wang Y M. 2003. Sedimentary evidence for a rapid,kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth Planet Sci Lett,213(3/4):391–405.

    55. Hu S B,He L J,Wang J Y. 2000. Heat flow in the continental area of China:A new data set[J]. Earth Planet Sci Lett,179(2):407–419. doi: 10.1016/S0012-821X(00)00126-6

    56. Huang J L,Zhao D P,Zheng S H. 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China[J]. J Geophys Res,107(B10):ESE 13-1–ESE 13-14. doi: 10.1029/2000JB000137

    57. Leloup P H,Ricard Y,Battaglia J,Lacassin R. 1999. Shear heating in continental strike-slip shear zones:Model and field examples[J]. Geophys J Int,136(1):19–40. doi: 10.1046/j.1365-246X.1999.00683.x

    58. Li M K,Zhang S X,Wang F,Wu T F,Qin W B. 2016. Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions[J]. J Asian Earth Sci,117(9):52–63.

    59. Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365. doi: 10.1038/ngeo2130

    60. Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,276(5313):788–790. doi: 10.1126/science.276.5313.788

    61. Spakman W,van der Lee S,van der Hilst R. 1993. Travel-time tomography of the European-Mediterranean mantle down to 1 400 km[J]. Phys Earth Planet Inter,79(1/2):3–74. doi: 10.1016/0031-9201(93)90142-V.

    62. Sun X X,Bao X W,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Yu D Y,Li H. 2014. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett,41(5):1479–1484. doi: 10.1002/2014GL059269

    63. Tapponnier P,Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature,264(5584):319–324. doi: 10.1038/264319a0

    64. Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    65. Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    66. Yao H J,Beghein C,van der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:II. Crustal and upper-mantle structure[J]. Geophys J Int,173(1):205–219. doi: 10.1111/gji.2008.173.issue-1

    67. Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Ann Rev Earth Planet Sci,28:211–280. doi: 10.1146/annurev.earth.28.1.211

    68. Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190.

    69. Zhang H J,Thurber C H. 2006. Development and applications of double-difference seismic tomography[J]. Pure Appl Geophys,163(2/3):373–403. doi: 10.1007/s00024-005-0021-y.

    70. Zhang X,Wang Y H. 2009. Crustal and upper mantle velocity structure in Yunnan,Southwest China[J]. Tectonophysics,471(3/4):171–185.

    71. Zhao D P,Kanamori H,Negishi H,Wiens D. 1996. Tomography of the source area of the 1995 Kobe earthquake:Evidence for fluids at the hypocenter?[J]. Science,274(5294):1891–1894. doi: 10.1126/science.274.5294.1891

    72. Zhao D P,Ochi F,Hasegawa A,Yamamoto A. 2000. Evidence for the location and cause of large crustal earthquakes in Japan[J]. J Geophys Res,105(B6):13579–13594. doi: 10.1029/2000JB900026

    73. Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383(4):113–122.

    1. [1]

      郭慧丽丁志峰 , 2018: 南北地震带北段的地壳速度结构及其构造启示, 地震学报, 40, 547-562. doi: 10.11939/jass.20180006

    2. [2]

      谢小玲孙金龙谢祖军夏少红曹敬贺万奎元徐辉龙 , 2016: 台东纵谷断裂2013年10月31日花莲ML6.7地震震源参数及其构造意义, 地震学报, 38, 318-320. doi: 10.11939/jass.2016.02.015

    3. [3]

      何正勤 丁志峰 叶太兰 孙为国 张乃铃 , 2001: 中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究., 地震学报, 23, 596-603.

    4. [4]

      郑需要张先康 , 1998: 地壳和上地幔三维速度与界面结构层析成像--理论部分, 地震学报, 20, 473-480.

    5. [5]

      杨志高张雪梅 , 2018: 青藏高原东北缘噪声层析成像研究, 地震学报, 40, 1-12. doi: 10.11939/jass.20170050

    6. [6]

      薛广盈1)丁韫玉2)袁志祥2) , 1997: 渭河断陷盆地地壳速度的层析成像研究, 地震学报, 19, 283-290.

    7. [7]

      杨卓欣 赵金仁 张先康 张成科 成双喜 段玉玲 张建狮 王帅军 , 2002: 伽师强震群区上地壳三维速度层析成像, 地震学报, 24, 153-161.

    8. [8]

      楼 海1) 王椿镛1) 皇甫岗2) 秦嘉政2) , 2002: 云南腾冲火山区上部地壳三维地震速度层析成像 , 地震学报, 24, 243-251.

    9. [9]

      白志明 王椿镛 , 2003: 云南地区上部地壳结构和地震构造环境的层析成像研究, 地震学报, 25, 117-127.

    10. [10]

      朱露培1, 曾融生1, 吴大铭2, Thomas J. Owens3, George E. Randall3 , 1992: 利用宽频带远震体波波形研究青藏高原地壳上地幔速度结构的初步结果, 地震学报, 14, 580-591.

    11. [11]

      詹 艳 赵国泽 王继军 汤 吉陈小斌 邓前辉 宣 飞 赵俊猛 , 2005: 青藏高原东北缘海原弧形构造区地壳电性结构探测研究, 地震学报, 27, 431-440.

    12. [12]

      李永华1)吴庆举1)田小波2)曾融生1)张瑞青1)李红光1) , 2006: 青藏高原拉萨及羌塘块体的地壳结构研究, 地震学报, 28, 586-595.

    13. [13]

      周民都 吕太乙 张元生 阮爱国 , 2000: 青藏高原东北缘地质构造背景及地壳结构研究 , 地震学报, 22, 645-653.

    14. [14]

      史大年1) 姜枚1) 彭聪1) 薛光琦1) 魏素花2) , 1999: 大别造山带东部地壳结构的层析成像及广角反射的地震学研究, 地震学报, 21, 403-410.

    15. [15]

      张先康杨卓欣杨玉春杨健宋建立赵平 , 1995: 地壳三维结构的层析成像方法--爆炸和地震资料的联合反演, 地震学报, 17, 422-431.

    16. [16]

      曾融生1, 吴大铭2, Thomas J. Owens3 , 1992: 中美合作课题青藏高原地壳上地幔结构以及地球动力学的研究介绍, 地震学报, 14, 521-522.

    17. [17]

      眭怡吴庆举张瑞青 , 2018: 基于三重震相的青藏高原东缘岩石圈地幔波速结构, 地震学报, 40, 537-546. doi: 10.11939/jass.20180030

    18. [18]

      李光品 徐果明 高尔根 徐 扬 , 2000: 中国东部地壳、上地幔横波品质因子的三维层析成像, 地震学报, 22, 78-81.

    19. [19]

      吕梓龄1, 庄真1, 傅竹武1, 胡家富1, 宋仲和2, 陈国英2, 安昌强2, 陈立华2 , 1994: 青藏高原地区地壳升降运动的分析, 地震学报, 16, 79-88.

    20. [20]

      孙少波陈石龚立卓徐伟民 , 2018: 青藏高原及周边地壳均衡模式与强震活动, 地震学报, 40, 341-350. doi: 10.11939/jass.20170225

  • 图 1  研究区域构造背景及台站分布

    Figure 1.  Regional tectonic settings and distribution of seismic stations in the studied area

    图 2  时距曲线拟合图

    Figure 2.  The diagram for fitting travel time with epicentral distance

    图 3  射线路径分布图

    Figure 3.  Distribution of ray paths

    图 4  利用L曲线法所选的最优平滑因子(a)和阻尼参数(b)

    Figure 4.  The optimum smoothing parameter (a) and damping parameter (b) selected by L curve method

    图 5  不同深度上剖面的棋盘格测试结果

    Figure 5.  The checkboard resolution test at different depths

    图 6  重定位前(a)、后(b)的地震空间分布变化

    Figure 6.  Spatial variation of seismic events before (a) and after (b) relocation

    图 7  重定位前(a)、后(b)的震源深度变化

    Figure 7.  Focal depth variation before (a) and after (b) relocation

    图 8  不同深度h处P波速度扰动和地震分布图(粗实线AA′ ,BB′ ,CC′ 为地震剖面的位置)

    Figure 8.  P wave velocity disturbance and earthquake distribution at different depth h

    图 9  P波速度纵向剖面与地震分布(剖面位置见图8

    Figure 9.  P wave velocity vertical profiles (their locations are shown in Fig. 8) and earthquake distribution

    深度/km vP/(km·s?1 深度/km vP/(km·s?1
    0 5.50 20 6.23
    5 5.89 30 6.50
    10 6.02 40 6.90

    表 1  P波初始速度模型

    Table 1.  Initial model of P wave velocity

    下载: 导出CSV
  • 加载中
图(10)表(1)
计量
  • PDF下载量:  63
  • 文章访问数:  547
  • HTML全文浏览量:  297
  • 引证文献数: 0
文章相关
  • 通讯作者:  吴庆举, wuqj@cea-igp.ac.cn
  • 收稿日期:  2018-06-13
  • 录用日期:  2018-09-30
  • 网络出版日期:  2019-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计