zhenbo

ISSN 0253-3782 CN 11-2021/P

陕西及邻区瑞雷波相速度层析成像

惠少兴 吴建平 颜文华 范莉苹

引用本文: 惠少兴, 吴建平, 颜文华, 范莉苹. 2019. 陕西及邻区瑞雷波相速度层析成像. 地震学报, 41(2): 181-193. doi: 10.11939/jass.20180081 shu
Citation:  Hui Shaoxing, Wu Jianping, Yan Wenhua, Fan Liping. 2019. Rayleigh wave phase velocity tomography in Shaanxi and its adjacent regions. Acta Seismologica Sinica41(2): 181-193. doi: 10.11939/jass.20180081 shu

陕西及邻区瑞雷波相速度层析成像

    通讯作者: 惠少兴, huisx2011@163.com
摘要: 本文利用布设于陕西及其邻区的喜马拉雅二期流动地震台阵和区内的固定地震台网共计257个台站于2014—2015年记录到的连续波形资料,采用基于图像分析的相速度提取方法,得到了7 185条瑞雷波相速度频散曲线,反演获得了周期为5—40 s的瑞雷波相速度分布图像,其最小分辨率约为20 km。结果表明:各周期瑞雷波相速度图像具有明显的横向不均匀性,能够较好地反映出地壳及上地幔顶部的地质构造特征。周期为5—10 s的瑞雷波相速度分布与地表地质构造密切相关,且高低速异常的分界线与地块边界高度吻合;周期为15 s的瑞雷波相速度分布图像显示出,大部分断陷沉积盆地(渭河、天水等盆地)表现为低速异常,表明此区域的沉积层厚度较大;周期为20—40 s的相速度分布则受地壳厚度影响较大,青藏高原东北缘始终呈现出明显的低速异常,鄂尔多斯地块中、下地壳以高速异常为主,但周期为20—30 s的相速度低速异常区分布于青藏高原沿六盘山逆冲褶皱带并一直延伸至鄂尔多斯内部,由此推测该区域地下介质中存在一定程度的物质交换和融合。

English

    1. 陈九辉,刘启元,李顺成,郭飙,赖院根. 2005. 青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报,48(2):333–342. doi: 10.3321/j.issn:0001-5733.2005.02.015

    2. Chen J H,Liu Q Y,Li S C,Guo B,Lai Y G. 2005. Crust and upper mantle S-wave velocity structure across northeastern Tibetan Plateau and Ordos block[J]. Chinese Journal of Geophysics,48(2):333–342 (in Chinese).

    3. 范莉苹,吴建平,房立华,王未来. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报,58(5):1555–1567.

    4. Fan L P,Wu J P,Fang L H,Wang W L. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics,58(5):1555–1567 (in Chinese).

    5. 房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279.

    6. Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).

    7. 宫相宽,陈丹玲,任云飞,刘良,高胜,杨士杰. 2016. 北秦岭含柯石英斜长角闪岩的发现及其地质意义[J]. 科学通报,61(12):1365–1378.

    8. Gong X K,Chen D L,Ren Y F,Liu L,Gao S,Yang S J. 2016. Identification of coesite-bearing amphibolite in the North Qinling and its geological significance[J]. Chinese Science Bulletin,61(12):1365–1378 (in Chinese).

    9. 郭晓玉,高锐,高建荣,徐啸,黄兴富. 2018. 青藏高原东北缘马衔山断裂带构造属性的综合研究[J]. 地球物理学报,61(2):560–569.

    10. Guo X Y,Gao R,Gao J R,Xu X,Huang X F. 2018. Integrated analysis on the tectonic features of the Maxianshan fault zone in the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,61(2):560–569 (in Chinese).

    11. 郭瑛霞,张元生,颜文华,魏从信,秦满忠. 2017a. 甘东南地区基于射线追踪面波频散三维成像[J]. 地震工程学报,39(2):268–277.

    12. Guo Y X,Zhang Y S,Yan W H,Wei C X,Qin M Z. 2017a. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing in southeastern area of Gansu Province[J]. China Earthquake Engineering Journal,39(2):268–277 (in Chinese).

    13. 郭瑛霞,张元生,刘旭宙,颜文华. 2017b. 应用背景噪声成像研究祁连山地区地壳S波速度结构[J]. 地震研究,40(3):482–490.

    14. Guo Y X,Zhang Y S,Liu X Z,Yan W H. 2017b. Application of ambient noise tomography to study the S-wave crustal velocity structure in Qilian mountains region[J]. Journal of Seismological Research,40(3):482–490 (in Chinese).

    15. 韩松,韩江涛,刘国兴,王海燕,梁宏达. 2016. 青藏高原东北缘至鄂尔多斯地块壳幔电性结构及构造变形研究[J]. 地球物理学报,59(11):4126–4138. doi: 10.6038/cjg20161116

    16. Han S,Han J T,Liu G X,Wang H Y,Liang H D. 2016. Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos block[J]. Chinese Journal of Geophysics,59(11):4126–4138 (in Chinese).

    17. 贺伟光,陈永顺,叶庆东,安美建,董树文. 2015. 秦岭及周边地区背景噪声Love波层析成像[J]. 地球物理学进展,30(1):47–56.

    18. He W G,Chen Y S,Ye Q D,An M J,Dong S W. 2015. Ambient noise Love-wave tomography in Qinling orogeny and surrounding area[J]. Progress in Geophysics,30(1):47–56 (in Chinese).

    19. 惠少兴,金昭娣,宋秀青. 2018. 陕西地区地壳速度模型研究[J]. 震灾防御技术,13(2):363–372.

    20. Hui S X,Jin Z D,Song X Q. 2018. Crustal velocity model of the Shaanxi region[J]. Technology for Earthquake Disaster Prevention,13(2):363–372 (in Chinese).

    21. 李文辉,高锐,王海燕,李英康,李洪强,侯贺晟,熊小松,郭晓玉,徐啸,邹长桥,梁宏达. 2017. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报,60(6):2265–2278.

    22. Li W H,Gao R,Wang H Y,Li Y K,Li H Q,Hou H S,Xiong X S,Guo X Y,Xu X,Zou C Q,Liang H D. 2017. Crustal structure beneath the Liupanshan fault zone and adjacent regions[J]. Chinese Journal of Geophysics,60(6):2265–2278 (in Chinese).

    23. 李英康,高锐,高建伟,米胜信,姚聿涛,李文辉,熊小松. 2015. 秦岭造山带的东西向地壳速度结构特征[J]. 地球物理学进展,30(3):1056–1069.

    24. Li Y K,Gao R,Gao J W,Mi S X,Yao Y T,Li W H,Xiong X S. 2015. Characteristics of crustal velocity structure along Qinling orogenic belt[J]. Progress in Geophysics,30(3):1056–1069 (in Chinese).

    25. 刘宝峰,李松林,张先康,张成科,赵金仁,任青芳,海燕. 2003. 玛沁—靖边剖面S波资料研究与探讨[J]. 地震学报,25(1):82–88. doi: 10.3321/j.issn:0253-3782.2003.01.010

    26. Liu B F,Li S L,Zhang X K,Zhang C K,Zhao J R,Ren Q F,Hai Y. 2003. Study of crustal structure with S-wave data from Maqin-Jingbian profile[J]. Acta Seismologica Sinica,25(1):82–88 (in Chinese).

    27. 刘庚,高原,石玉涛. 2017. 秦岭造山带及其两侧区域地壳剪切波分裂[J]. 地球物理学报,60(6):2326–2337.

    28. Liu G,Gao Y,Shi Y T. 2017. Shear-wave splitting in Qinling orogen and its both sides[J]. Chinese Journal of Geophysics,60(6):2326–2337 (in Chinese).

    29. 任隽,彭建兵,王夫运,刘晨,冯希杰,戴王强. 2012. 渭河盆地及邻区地壳深部结构特征研究[J]. 地球物理学报,55(9):2939–2947.

    30. Ren J,Peng J B,Wang F Y,Liu C,Feng X J,Dai W Q. 2012. The research of deep structural features of Weihe basin and adjacent areas[J]. Chinese Journal of Geophysics,55(9):2939–2947 (in Chinese).

    31. 王伟涛,杨润海,郑定昌,倪四道,王宝善. 2011. 云南地区背景噪声互相关函数中体波信号来源初探[J]. 地震研究,34(3):350–357. doi: 10.3969/j.issn.1000-0666.2011.03.017

    32. Wang W T,Yang R H,Zheng D C,Ni S D,Wang B S. 2011. Study on the origin of the body wave extracted from ambient seismic noise cross-correlation function in Yunnan[J]. Journal of Seismological Research,34(3):350–357 (in Chinese).

    33. 王亚伟,刘良,廖小莹,盖永升,杨文强,康磊. 2016. 秦岭杂岩清油河斜长角闪岩多期变质的证据:来自锆石微量元素和包裹体的启示[J]. 岩石学报,32(5):1467–1492.

    34. Wang Y W,Liu L,Liao X Y,Ge Y S,Yang W Q,Kang L. 2016. Multi-metamorphism of amphibolite in the Qinling complex,Qingyouhe area:Revelation from trace elements and mineral inclusions in zircons[J]. Acta Petrologica Sinica,32(5):1467–1492 (in Chinese).

    35. 喜马拉雅地震科学台阵. 2011. 中国地震科学探测台阵波形数据: 喜马拉雅计划[Z]. 北京: 中国地震局地球物理研究所. doi: 10.12001/ChinArray.Data.Himalaya.

    36. China Array-Himalaya. 2011. China Seismic Array Waveform Data of Himalaya Project[Z]. Beijing: Institute of Geophysics, China Earthquake Administration. doi: 10.12001/ChinArray.Data.Himalaya.

    37. 莘海亮,刘明军,张元生,康敏. 2017. 太行山断裂带东南缘地壳三维P波速度结构成像[J]. 地震工程学报,39(1):141–149. doi: 10.3969/j.issn.1000-0844.2017.01.0141

    38. Xin H L,Liu M J,Zhang Y S,Kang M. 2017. Tomography of 3D P-wave velocity structure of crust at southeast margin of Taihang mountains fault zone[J]. China Earthquake Engineering Journal,39(1):141–149 (in Chinese).

    39. 徐树斌,米宁,徐鸣洁,王良书,李华,于大勇. 2013. 利用接收函数研究渭河地堑及其周边地壳结构[J]. 中国科学:地球科学,43(10):1651–1658.

    40. Xu S B,Mi N,Xu M J,Wang L S,Li H,Yu D Y. 2013. Crustal structures of the Weihe graben and its surroundings from receiver functions[J]. Science China Earth Sciences,43(10):1651–1658 (in Chinese).

    41. 杨志高,张雪梅. 2018. 青藏高原东北缘噪声层析成像研究[J]. 地震学报,40(1):1–12. doi: 10.3969/j.issn.1000-0844.2018.01.001

    42. Yang Z G,Zhang X M. 2018. Ambient noise Rayleigh wave tomography in the northeastern Tibetan Plateau[J]. Acta Seismologica Sinica,40(1):1–12 (in Chinese).

    43. 姚华建,徐果明,肖翔. 2004. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究,25(1):1–8. doi: 10.3969/j.issn.1003-3246.2004.01.001

    44. Yao H J,Xu G M,Xiao X. 2004. A quick tracing method based on image analysis technique for the determination of dual stations phase velocities dispersion curve of surface wave[J]. Seismological and Geomagnetic Observation and Research,25(1):1–8 (in Chinese).

    45. 余大新,吴庆举,王鹏,叶庆东,潘佳铁,高孟潭. 2016. 蒙古中南部地区基于天然地震的勒夫波相速度层析成像[J]. 地震学报,38(1):41–52.

    46. Yu D X,Wu Q J,Wang P,Ye Q D,Pan J T,Gao M T. 2016. Love wave phase velocity tomography in the south-central Mongolia from earthquake[J]. Acta Seismologica Sinica,38(1):41–52 (in Chinese).

    47. 张国伟,孟庆任,赖绍聪. 1995. 秦岭造山带的结构构造[J]. 中国科学:B辑,25(9):994–1003.

    48. Zhang G W,Meng Q R,Lai S C. 1995. Tectonics and structure of Qinling orogenic belt[J]. Science in China:Series B,25(9):994–1003 (in Chinese).

    49. 郑晨,丁志峰,宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报,61(4):1211–1224.

    50. Zheng C,Ding Z F,Song X D. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern North-South Seismic Zone[J]. Chinese Journal of Geophysics,61(4):1211–1224 (in Chinese).

    51. 周民都. 2006. 青藏高原东北缘深地震测深研究成果回顾[J]. 西北地震学报,28(2):189–191.

    52. Zhou M D. 2006. Review of study on the depth seismic sounding in the northeastern margin of Qinghai-Tibetan Plateau[J]. Northwestern Seismological Journal,28(2):189–191 (in Chinese).

    53. Backus G E,Gilbert F. 1970. Uniqueness in the inversion of inaccurate gross Earth data[J]. Phil Trans R Soc Lond A,266:123–192. doi: 10.1098/rsta.1970.0005

    54. Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024

    55. Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/gji.2007.169.issue-3

    56. Ditmar P G,Yanovskaya T B. 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity[J]. Izv Akad Nauk SSSR Fiz Zeml,6:30–60.

    57. Fang L H,Wu J P,Ding Z F,Panza G F. 2010. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J]. Geophys J Int,181(2):1171–1182.

    58. Li Y H,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. An upper-mantle S-wave velocity model for east Asia from Rayleigh wave tomography[J]. Earth Planet Sci Lett,377/378:367–377. doi: 10.1016/j.jpgl.2013.06.033

    59. Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    60. Wang B S,Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophy Res,115(B6):B06308.

    61. Wang W L,Wu J P,Fang L H,Lai G J,Yang T,Cai Y. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. J Geophy Res,119(2):1061–1078. doi: 10.1002/2013JB010317

    62. Wessel P,Smith W H F. 1998. New,improved version of Generic Mapping Tools Released[J]. Eos Trans AGU,79(47):579. doi: 10.1029/98EO00426

    63. Yanovskaya T B,Ditmar P G. 1990. Smoothness criteria in surface wave tomography[J]. Geophys J Int,102(1):63–72. doi: 10.1111/gji.1990.102.issue-1

    64. Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2

    1. [1]

      顾勤平1,2) 朱介寿2) 康清清1) 程先琼2) 边立恩3) , 2010: 欧亚大陆及西太平洋边缘海地区瑞雷波群速度结构与各向异性分布, 地震学报, 32, 12-22.

    2. [2]

      李爽冯梅安美建董树文 , 2014: 秦岭及周边地区瑞雷波方位各向异性, 地震学报, 36, 531-545. doi: 10.3969/j.issn.0253-3782.2014.04.001

    3. [3]

      余大新吴庆举王鹏叶庆东潘佳铁高孟潭 , 2016: 蒙古中南部地区基于天然地震的 勒夫波相速度层析成像, 地震学报, 38, 41-92. doi: 10.11939/jass.2016.01.004

    4. [4]

      胥颐1, 朱介寿2, 刘志坚1, 张华卿1, 朱燕1 , 1994: 新疆天山及邻区地壳上地幔三维速度图象, 地震学报, 16, 480-487.

    5. [5]

      王伟平杨建思彭朝勇郑钰徐志强姜旭东 , 2019: 2017年九寨沟MS7.0地震震源区速度结构与余震分布, 地震学报, 41, 1-12. doi: 10.11939/jass.20180058

    6. [6]

      李大虎吴萍萍丁志峰 , 2015: 四川芦山MS7.0地震震源区及其周边区域P波三维速度结构研究, 地震学报, 37, 371-385. doi: 10.11939/jass.2015.03.001

    7. [7]

      郑定昌盖增喜杨润海闵照旭唐有彩姜明明庞卫东 , 2014: 云南地区背景噪声层析成像, 地震学报, 36, 602-615. doi: 10.3969/j.issn.0253-3782.2014.04.007

    8. [8]

      沈玉松康英 , 2014: 广东及其邻域噪声面波层析成像, 地震学报, 36, 826-836. doi: 10.3969/j.issn.0253-3782.2014.05.007

    9. [9]

      梁建文张秋红 李方杰 , 2006: 浅圆沉积谷地对瑞雷波的散射-高频解, 地震学报, 28, 176-182.

    10. [10]

      巴振宁梁建文 , 2014: 瑞雷波斜入射下层状半空间中沉积谷地周围的三维散射研究, 地震学报, 36, 571-583. doi: 10.3969/j.issn.0253-3782.2014.04.004

    11. [11]

      白志明 王椿镛 , 2003: 云南地区上部地壳结构和地震构造环境的层析成像研究, 地震学报, 25, 117-127.

    12. [12]

      郑定昌王俊 , 2017: 基于背景噪声的川滇地区勒夫波层析成像, 地震学报, 39, 633-647. doi: 10.11939/jass.2017.05.001

    13. [13]

      陈国英1, 曾融生1, 吴大铭2, 安昌强1, 苏小兰1 , 1992: 青藏高原瑞利波相速度与深部结构的横向变化 , 地震学报, 14, 565-572.

    14. [14]

      何正勤 , 1993: 吕村-范县剖面的浅层速度结构<, 地震学报, 15, 168-175.

    15. [15]

      叶庆东1) 丁志峰1) 郑 晨1) 吕苗苗1) 陈浩朋2) 吴萍萍3) , 2015: 大别-苏鲁及其邻近地区基于背景噪声的瑞雷波和勒夫波相速度层析成像, 地震学报, 37, 29-38. doi: 10.11939/jass.2015.01.003

    16. [16]

      李 军1) 金 星1,2,3) 峥嵘1) 林树1) 袁丽文1) 陈 莹1) , 2009: 利用地震噪声准实时监测短周期面波波速变化, 地震学报, 31, 629-640.

    17. [17]

      黄 慧 陈晓非 , 2008: P-SV波展平变换的精确求解--以地震面波为例, 地震学报, 30, 105-113.

    18. [18]

      何现启朱自强彭凌星戴光明 , 2015: 黏弹性EDA介质中地震波的衰减特性研究, 地震学报, 37, 973-982. doi: 10.11939/jass.2015.06.008

    19. [19]

      何现启朱自强鲁光银 , 2014: EDA介质中地震波的传播特征, 地震学报, 36, 403-416. doi: 10.3969/j.issn.0253-3782.2014.03.006

    20. [20]

      何正勤 苏 伟 叶太兰 , 2004: 云南地区的短周期面波相速度层析成像研究, 地震学报, 26, 583-590.

  • 图 1  陕西及邻区构造背景及台站分布

    Figure 1.  Tectonic settings and distribution of seismic stations in Shaanxi and its adjacent regions

    图 2  62300号台站与其它台站间的波形互相关

    Figure 2.  The cross-correlation waveforms between the station No. 62300 and other ones

    图 3  面波频散曲线提取示例

    Figure 3.  An example for extracting Rayleigh wave frequency dispersion curve

    图 4  各周期反演所用射线数目

    Figure 4.  The number of rays for inversion at different periods

    图 6  陕西及邻区各周期瑞雷波相速度分布

    Figure 6.  Phase velocity maps of Rayleigh wave at different periods in Shaanxi and its adjacent regions

    图 5  不同周期T时基阶瑞雷波相速度对S波速度的敏感核

    Figure 5.  Sensitivity kernels of fundamental Rayleigh wave phase velocity to shear wave velocity structure at different periods T

    图 7  各周期瑞雷面波相速度反演的横向分辨率分布

    Figure 7.  Horizontal resolution maps of Rayleigh wave phase velocity tomography at different periods

    图 8  不同区域不同周期的相速度对比

    Figure 8.  Comparison of phase velocity of different periods in different regions

  • 加载中
图(9)
计量
  • PDF下载量:  22
  • 文章访问数:  1356
  • HTML全文浏览量:  210
  • 引证文献数: 0
文章相关
  • 通讯作者:  惠少兴, huisx2011@163.com
  • 收稿日期:  2018-06-13
  • 录用日期:  2018-12-21
  • 网络出版日期:  2019-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计