zhenbo

ISSN 0253-3782 CN 11-2021/P

利用多种地震数据联合反演剪切波速度结构的可靠性检测

郑现 赵翠萍 郑斯华

引用本文: 郑现, 赵翠萍, 郑斯华. 2019. 利用多种地震数据联合反演剪切波速度结构的可靠性检测. 地震学报, 41(2): 194-206. doi: 10.11939/jass.20180100 shu
Citation:  Zheng Xian, Zhao Cuiping, Zheng Sihua. 2019. Reliability tests of shear wave velocity structure from joint inversion of multiple types of seismic data. Acta Seismologica Sinica41(2): 194-206. doi: 10.11939/jass.20180100 shu

利用多种地震数据联合反演剪切波速度结构的可靠性检测

    通讯作者: 郑现, zhengx@cea-ies.ac.cn
摘要: 本文模拟使用青藏高原东南缘区域台网及国家台网的170个宽频台站基于背景噪声、天然地震面波、P波接收函数反演时的实际数据,对青藏高原东南缘假定的初始模型进行恢复,通过计算初始模型台站下方纯路径频散、提取各台站对间的瑞雷波频散曲线、计算理论接收函数以及反演剪切波速度结构来测试使用不同单项数据与联合使用多种数据反演对初始模型的恢复程度。结果表明,同时使用接收函数、基于噪声经验格林函数的群速度、相速度频散以及基于天然地震面波的相速度频散联合反演的剪切波速度结构,充分利用了几种数据的分辨率优势,清晰地分辨出中下地壳及上地幔顶部的低速层。此外,本文也分析了实际数据处理中出现的计算误差、随机噪声干扰对计算结果稳定性的影响。结果显示:对于面波频散,加入1%的误差后,联合反演的结果仍可很好地反映低速层的形态,但是当误差提升至5%后,对最终结果则产生了一定程度的影响;而在接收函数中加入4%的随机噪声时,虽然地幔低速层的上界面和下界面会略微受到随机噪声的影响,但是低速层的深度范围和速度值均得到了较好的恢复。

English

    1. 胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013

    2. Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the west Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750

    3. 刘启元,李昱,陈九辉,van der Hilst R D,郭飚,王峻,齐少华,李顺成. 2010. 基于贝叶斯理论的接收函数与环境噪声联合反演[J]. 地球物理学报,53(11):2603–2612.

    4. Liu Q Y,Li Y,Chen J H,van der Hilst R D,Guo B,Wang J,Qi S H,Li S C. 2010. Joint inversion of receiver function and ambient noise based on Bayesian theory[J]. Chinese Journal of Geophysics,53(11):2603–2612 (in Chinese).

    5. Bao X W,Sun X X,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Li H,Yu D Y,Huang Z C,Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth Planet Sci Lett,415:16–24.

    6. Bensen G B,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/gji.2007.169.issue-3

    7. Bensen G B,Ritzwoller M H,Shapiro N M. 2008. Broadband ambient noise surface wave tomography across the United States[J]. J Geophys Res,113(B5):B5306. doi: 10.1029/2007JB005248

    8. Bodin T,Sambridge M,Tkal?I? H,Arroucau P,Gallagher K,Rawlinson N. 2012. Transdimensional inversion of receiver functions and surface wave dispersion[J]. J Geophys Res,117(B2):B02301.

    9. Campillo M,Paul A. 2003. Long-range correlations in the diffuse seismic coda[J]. Science,299(5606):547–549. doi: 10.1126/science.1078551

    10. Chang S J,Baag C E,Langston C A. 2004. Joint analysis of teleseismic receiver functions and surface wave dispersion using the genetic algorithm[J]. Bull Seismol Soc Am,94(2):691–704. doi: 10.1785/0120030110

    11. Fang H J,Zhang H J,Yao H J,Allam A,Zigone D,Ben-Zion Y,Thurber C,van der Hilst R D. 2016. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California Plate boundary region[J]. J Geophys Res,121(5):3557–3569. doi: 10.1002/2015JB012702

    12. Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x

    13. Kang D,Shen W S,Ning J Y,Ritzwoller M H. 2016. Seismic evidence for lithospheric modification associated with intracontinental volcanism in northeastern China[J]. Geophys J Int,204(1):215–235.

    14. Lawrence J F,Wiens D A. 2004. Combined receiver-function and surface wave phase-velocity inversion using a niching genetic algorithm:Application to Patagonia[J]. Bull Seismol Soc Am,94(3):977–987. doi: 10.1785/0120030172

    15. Li Y H,Wu Q J,Zhang R Q,Tian X B,Zeng R S. 2008. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data[J]. Phy Earth Planet Inter,170(1/2):134–146.

    16. Lin F C,Ritzwoller M H,Townend J,Bannister S,Savage M K. 2007. Ambient noise Rayleigh wave tomography of New Zea-land[J]. Geophys J Int,170(2):649–666. doi: 10.1111/gji.2007.170.issue-2

    17. Lin F C,Moschetti M P,Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps[J]. Geophys J Int,173(1):281–298. doi: 10.1111/gji.2008.173.issue-1

    18. Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365. doi: 10.1038/ngeo2130

    19. Love A E H. 1911. Some Problems of Geodynamics[M]. New York: Cambridge University Press: 1–210.

    20. Moschetti M P,Ritzwoller M H,Lin F C,Yang Y. 2010. Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data[J]. J Geophs Res,115(B10):B10306. doi: 10.1029/2010JB007448

    21. Obrebski M,Allen R M,Zhang F X,Pan J T,Wu Q J,Hung S H. 2012. Shear wave tomography of China using joint inversion of body and surface wave constraints[J]. J Geophys Res,117(B1):B01311.

    22. Paige C C,Saunders M A. 1982a. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Software,8(1):43–71. doi: 10.1145/355984.355989

    23. Paige C C,Saunders M A. 1982b. LSQR:Sparse linear equations and least squares problems[J]. ACM Trans Math Software,8(2):195–209. doi: 10.1145/355993.356000

    24. Press F. 1956. Determination of crustal structure from phase velocity of Rayleigh waves part I:Southern California[J]. GSA Bull,67(12):1647–1658. doi: 10.1130/0016-7606(1956)67[1647:DOCSFP]2.0.CO;2

    25. Saint Louis University. 2013. Computer programs in seismology[CP/OL]. [2018−05−01]. http://www.eas.slu.edu/eqc/eqccps.html.

    26. Shapiro N M,Ritzwoller M H. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophys J Int,151(1):88–105. doi: 10.1046/j.1365-246X.2002.01742.x

    27. Shapiro N M,Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett,31(7):L07614.

    28. Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339

    29. Stoneley R. 1926. The effect of the ocean on Rayleigh waves[J]. Geophys Suppl Mon Not Roy Astronom Soc,1(7):349–356.

    30. Sun X L,Song X D,Zheng S H,Yang Y J,Michiael H R. 2010. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography[J]. Earthquake Science,23(5):449–463. doi: 10.1007/s11589-010-0744-4

    31. Sun X X,Bao X W,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Yu D Y,Li H. 2014. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett,402(5):1479–1484.

    32. Tokam A P K,Tabod C T,Nyblade A A,Julià J,Wiens D A,Pasyanos M E. 2010. Structure of the crust beneath Cameroon,West Africa,from the joint inversion of Rayleigh wave group velocities and receiver functions[J]. Geophys J Int,183(2):1061–1076. doi: 10.1111/j.1365-246X.2010.04776.x

    33. Wang W L,Wu J P,Fang L H,Lai G J,Yang T,Cai Y. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. J Geophys Res,119(2):1061–1078. doi: 10.1002/2013JB010317

    34. Wessel P,Smith W H F. 1998. New,improved version of generic mapping tools released[J]. Eos Trans AGU,79(47):579. doi: 10.1029/98EO00426

    35. Yang Y J,Ritzwoller M H,Levshin A L,Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophys J Int,168(1):259–274. doi: 10.1111/gji.2007.168.issue-1

    36. Yang Y J,Zheng Y,Chen J,Zhou S Y,Celyan S,Sandvol E,Tilmann F,Priestley K,Hearn T M,Ni J F,Brown L D,Ritzwoller M H. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochem Geophys Geosyst,11(8):Q08010.

    37. Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: I . Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2

    38. Yao H J,Beghein C,van der Hilst R D. 2008. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: Ⅱ . Crust and upper-mantle structure[J]. Geophys J Int,173(1):205–219. doi: 10.1111/gji.2008.173.issue-1

    39. Zhang P,Yao H J. 2017. Stepwise joint inversion of surface wave dispersion,Rayleigh wave ZH ratio,and receiver function data for 1D crustal shear wave velocity structure[J]. Earthquake Science,30(5/6):229–238. doi: 10.1007/s11589-017-0197-0

    40. Zheng S H,Sun X L,Song X D,Yang Y J,Ritzwoller M H. 2008. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochem Geophys Geosyst,9(5):Q05020.

    41. Zheng X,Zhao C P,Zhou L Q,Zheng S H. 2019. Crustal and upper mantle structure beneath SE Tibetan Plateau from joint inversion of multiple types of seismic data[J]. Geophys J Int,217:331–345. doi: 10.1093/gji/ggz027

    42. Zhou L Q,Xie J Y,Shen W S,Zheng Y,Yang Y J,Shi H X,Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophys J Int,189(3):1565–1583. doi: 10.1111/gji.2012.189.issue-3

    1. [1]

      刘文学刘贵忠周刚李欣张慧民徐恒垒王红春 , 2014: 天山及其邻区地壳上地幔S波速度结构的接收函数与面波频散联合反演, 地震学报, 36, 20-31. doi: 10.3969/j.issn.0253-3782.2014.01.002.

    2. [2]

      王月张捷 , 2018: 伪二维弹性波联合反演近地表的速度和衰减, 地震学报, 40, 595-608. doi: 10.11939/jass.20170196

    3. [3]

      毛 燕1,2)胡家富3) , 2012: 2007年宁洱MS6.4地震的地面运动预测, 地震学报, 34, 339-349.

    4. [4]

      张攀朱良保陈浩朋王清东杨颖航 , 2014: 用接收函数方法研究中国境内地壳结构, 地震学报, 36, 850-861. doi: 10.3969/j.issn.0253-3782.2014.05.009

    5. [5]

      武岩丁志峰朱露培 , 2014: 利用接收函数研究渤海湾盆地沉积层结构, 地震学报, 36, 837-849. doi: 10.3969/j.issn.0253-3782.2014.05.008

    6. [6]

      姚志祥王椿镛曾融生楼海周民都 , 2014: 利用接收函数方法研究西秦岭构造带及其邻区地壳结构, 地震学报, 36, 1-19. doi: 10.3969/j.issn.0253-3782.2014.01.001

    7. [7]

      李翠芹沈旭章秦满忠 , 2014: P波速度对接收函数H-k搜索叠加结果的影响分析, 地震学报, 36, 480-490. doi: 10.3969/j.issn.0253-3782.2014.03.013

    8. [8]

      段永红1)张先康1) 刘 志1)徐朝繁1)王夫运1)潘纪顺1)梁国经2) , 2007: 阿尼玛卿缝合带东段地壳结构的接收函数研究, 地震学报, 29, 483-491.

    9. [9]

      朱新运1,3)陈运泰1,2) , 2007: 用Lg波资料反演场地效应与地震波衰减参数, 地震学报, 29, 569-580.

    10. [10]

      叶秀薇黄元敏胡秀敏刘锦 , 2013: 广东东源MS4.8地震序列震源位置及周边地区P波三维速度结构, 地震学报, 35, 809-819. doi: 10.3969/j.issn.0253.3782.2013.06.004

    11. [11]

      张元生1)周民都1)荣代潞1)张立光1)许中秋2) , 2004: 祁连山中东段地区三维速度结构研究, 地震学报, 26, 247-255.

    12. [12]

      于俊谊朱新运 , 2016: 浙江地区Lg波路径衰减关系及 台站场地响应参数, 地震学报, 38, 103-110. doi: 10.11939/jass.2016.01.010

    13. [13]

      蒋生淼易磊张旭温扬茂 , 2018: 2016年日本熊本地震破裂时空过程联合反演, 地震学报, 40, 13-23. doi: 10.11939/jass.20170097

    14. [14]

      张之立1, 邓玉琼2, 王成宝1, 田华1 , 1990: 华北大震序列的断裂系模式及破裂过程的联合反演 , 地震学报, 12, 335-347.

    15. [15]

      赵延娜段永红邹长桥魏运浩邱勇林吉焱李学民 , 2015: 江西九江—福建宁化接收函数剖面研究, 地震学报, 37, 722-732. doi: 10.11939/jass.2015.05.002

    16. [16]

      许英才王琼曾宪伟马禾青许文俊金涛 , 2018: 鄂尔多斯地块西缘莫霍面起伏及泊松比分布, 地震学报, 40, 563-581. doi: 10.11939/jass.20170224

    17. [17]

      李永华1)吴庆举1)田小波2)曾融生1)张瑞青1)李红光1) , 2006: 青藏高原拉萨及羌塘块体的地壳结构研究, 地震学报, 28, 586-595.

    18. [18]

      林长佑, 武玉霞 , 1993: 大地电磁测深和电偶源频率电磁测深资料反演 , 地震学报, 15, 91-96.

    19. [19]

      贺传松 王椿镛 吴建平 , 2004: 腾冲火山区S波速度结构接收函数反演, 地震学报, 26, 30-37.

    20. [20]

      高占永张瑞青吴庆举张广 成 , 2015: 中国东北地区下方660 km间断面研究, 地震学报, 37, 711-721. doi: 10.11939/jass.2015.05.001

  • 图 1  青藏高原东南缘台站(a)及剪切波速度分布(b)示意图

    Figure 1.  Images of station locations (a) and shear wave velocity (b) in the southeastern margin of the Tibetan Plateau

    图 2  成像分辨率检测试验中各周期实际使用的频散数目

    Figure 2.  Number of dispersion measurements used in resolution test at each periods

    图 3  格点(102°E,25°N)下方的联合反演结果

    Figure 3.  Joint inversion results beneath the grid (102°E,25°N)

    图 4  由图1初始模型计算得到的不同周期T瑞雷波的相速度、群速度图像

    Figure 4.  Rayleigh wave phase velocity and group velocity images at different periods T calculated from the initial model shown in Fig.1

    图 5  使用不同数据反演所得沿25°N剖面的剪切波速度结构

    Figure 5.  Cross sections of shear wave velocity structure along 25°N from inversion by using different seismic data

    图 6  沿25°N剖面使用不同数据反演后模型与初始模型的速度扰动分布

    Figure 6.  Cross sections of shear wave velocity perturbation along 25°N using different types of seismic data

    图 7  初始模型纯路径频散加入1%初始误差后反演的瑞雷波相速度、群速度图像

    Figure 7.  Rayleigh wave phase velocity and group velocity images at different periods by inversion with 1% initial error added to the pure path dispersions based on the the initial model

    图 8  初始模型纯路径频散加入1% (a)和5% (b)初始误差后反演所得到的剪切波速度结构

    Figure 8.  Cross sections of shear wave velocity along 25°N inverted using pure path dispersion measurements with 1% (a) and 5% (b) initial error added to the pure path dispersions based on the the initial model

    图 9  格点(102°E,25°N)下方100组基于加入随机噪声的接收函数联合反演的结果

    Figure 9.  The 100 joint inversion results beneath the grid (102°E, 25°N) based on receiver functions with different random noise

    图 10  沿25°N剖面加入随机噪声后反演所获得的剪切波速度图

    Figure 10.  Shear wave velocity image from inversion with random noise along 25°N vertical cross section

  • 加载中
图(10)
计量
  • PDF下载量:  24
  • 文章访问数:  472
  • HTML全文浏览量:  191
  • 引证文献数: 0
文章相关
  • 通讯作者:  郑现, zhengx@cea-ies.ac.cn
  • 收稿日期:  2018-07-18
  • 录用日期:  2018-09-20
  • 网络出版日期:  2019-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计